
spark - Cheat Sheet

docs.spark.io

Created by Matt Brailsford | Licensed under a Creative Commons Attribution-ShareAlike 4.0 International license | Page 1

Structure
void setup(){ ... }
Initialization function.

void loop(){ ... }
Main program loop.

Control Structures
if(x<5){ ... } [else { ... }]
Run a block of code only if a condition is true. If an
else statement is present, run this block if condition
is false.

for(int i=0; i<255; i++){ ... }
Loop for a set count.

while(x<5){ ... }
Loop while a condition is true.

break
Escape from a loop control structure,

continue
Escape from the current iteration of a control
structure

General Operators
=
Assignment.

+, -, *, /, %
Plus, minus, multiply, divide, modulo.

==, !=
Equal to, not equal to.

<, <=, >, >=
Less than, less than or equal to, greater than,
greater than or equal to.

Bitwise Operators
&, |, ^, ~
Bitwise AND, OR, XOR, NOT.

<<, >>
Bitwise left shift, bitwise right shift.

Compound Operators
++, --, +=, -=, *=, /=, &=, !=
Increment, decrement, compound addition,
compound subtraction, compound multiplication,
compound division, compound bitwise AND,
compound bitwise OR.

Pointer Access
&, *
Reference operator, dereference operator.

Constants
HIGH, LOW
Pin value constants.

OUTPUT, INPUT, INPUT_PULLUP,
INPUT_PULLDOWN
Pin mode constants.

true, false
Boolean constants.

Data Types
void
Function type declaration for functions that return
no information.

boolean
eg, true or false

char
8-bit (1-byte) number from -128 to 127.

byte
8-bit (1-byte) unsigned number from 0 to 255.

int
32-bit (4-byte) value from -2,147,483,648 to
2,147,483,647.

unsigned int
32-bit (4-byte) value from 0 to 4,294,967,295.

long
32-bit (4-byte) value from -2,147,483,648 to
2,147,483,647.

unsigned long

32-bit (4-byte) value from 0 to 4,294,967,295.

short
16-bit (2-byte) value from 32,768 to 32,767.

float
32-bit (4-byte) floating point number.

double

64-bit (8-byte) floating point number.

Arrays
int myArray[6];
An unpopulated integer array with 6 slots.

int myArray[] = {1,2,3,4,5,6};
A populated integer array with 6 slots.

int myArray[6] = {1,2,3,4};
A partially populated integer array with explicitly 6
slots.

Strings
Basic strings are represented as char arrays,
however the spark core also has a String class with
many more helper methods.

char s1[15];
char s2[6] = {‘s’,’p’,’a’,’r’,’k’};
char s3[6] = {‘s’,’p’,’a’,’r’,’k’,’\0’};
char s4[] = “spark”;
char s5[6] = “spark”;
char s6[15] = “spark”;

Math
min(x, y);
Calculates the minimum of two numbers.

max(x, y);
Calculates the maximum of two numbers.

abs(x);
Computes the absolute value of a number.

constrain(x, min, max);
Constrains a number to be within a range.

map(x, fromMin, fromMmax, toMin, toMax);
Re-maps a number from one range to another.

pow(base, exponent);
Calculates the value of a number raised to a
power.

sqrt(x);
Calculates the square root of a number.

Time
The spark core comes with basic timing methods,
but also has a Time class with many more helper
methods.

millis();
Returns the number of milliseconds since the
Spark Core began running the current program.

micros();
Returns the number of microseconds since the
Spark Core began running the current program.

delay(ms);
Pauses the program for the amount of time (in
miliseconds) specified.

delayMicroseconds(ms);
Pauses the program for the amount of time (in
microseconds) specified.

I/O
pinMode(pin, mode);
Configures the specified pin to behave either as an
input or output.

digitalWrite(pin, value);
Write a HIGH or a LOW value to a digital pin.

digitalRead(pin);
Reads the value from a specified digital pin, either
HIGH or LOW.

analogWrite(pin, value);
Writes an analog value (PWM wave) to a pin.

analogRead(pin);
Reads the value from the specified analog pin.
Values range between 0 and 4095.

http://docs.spark.io/
http://twitter.com/mattbrailsford
http://creativecommons.org/licenses/by-sa/4.0/
http://docs.spark.io/firmware/#language-syntax-string-class
http://docs.spark.io/firmware/#libraries-time

spark - Cheat Sheet

docs.spark.io

Created by Matt Brailsford | Licensed under a Creative Commons Attribution-ShareAlike 4.0 International license | Page 2

Interrupts
attachInterrupt(pin, function, mode);
Specifies a function to call when an external
interrupt occur

detachInterrupt(pin);
Turns off the given interrupt.

noInterrupts();
Disabled interrupts.

interrupts();
Re-enabled interrupts.

Tone
tone(pin, frequency, duration);
Generates a square tone on the given pin.

noTone(pin);
Stops the current tone playing on the given pin

RGB
RGB.control(bool);
Takes and gives back user control of the built in
RGB LED.

RGB.color(red, green, blue);
Set the color of the RGB with three values, 0 to
255.

RGB.brightness(val);
Scale the brightness value of all three RGB colors
with one value, 0 to 255.

Servo
servo.attach(pin);
Setup a servo on a particular pin.

servo.detach();
Detach the servo variable from its pin.

servo.write(angle);
Set the angle of the servo.

servo.read();
Reads the current angle of the servo.

TCPClient
client.connect(ip, port);
client.connect(url, port);
Connects to a specified IP address/URL and port.
Returns true if connection succeeds, false if not.

client.connected();
Whether or not the client is connected. Returns
true if the client is connected, false if not.

client.write(val);
client.write(buf, len);
Write data to the server the client is connected to.

client.print(data);
client.print(data, BASE);
Print data to the server that a client is connected to.

client.println();
client.println(data);
client.println(data, BASE);
Print data, followed by a carriage return and
newline, to the server a client is connected to.

client.available();
Returns the number of bytes available for reading.

client.read();
Read the next byte received from the server the
client is connected to

client.flush();
Discard any bytes that have been written to the
client but not yet read

client.stop();
Disconnect from the server.

TCPServer
TCPServer server = TCPServer(port);
Create a server that listens for incoming
connections on the specified port.

server.begin();
Tells the server to begin listening for incoming
connections.

server.available();
Gets a client that is connected to the server and
has data available for reading.

server.write(val);
server.write(buf, len);
Write data to all the clients connected to a server.

server.print(data);
server.print(data, BASE);
Print data to all the clients connected to a server.

server.println();
server.println(data);
server.println(data, BASE);

Print data, followed by a newline, to all the clients
connected to a server.

Cloud Functions
Spark.variable(name, var, type);
Expose a variable through the Spark Cloud.

Spark.function(name, function);
Expose a function through the Spark Cloud.

Spark.publish(name, data);
Publish an event through the Spark Cloud.

Spark.subscribe(name, function);
Subscribe to events published by Cores.

Cloud API
HEADER Bearer {ACCESS_TOKEN},
?access_token={ACCESS_TOKEN}
Authenticates the request with the given access
token.

GET /v1/devices/{DEVICE_ID}/{VARIABLE}
Read a variables exposed through the Spark Cloud
from the given device.

POST /v1/devices/{DEVICE_ID}/{FUNCTION}
Call a method exposed through the Spark Cloud on
the given device.

GET /v1/devices/{DEVICE_ID}/events/
[/{EVENT}]
Open an SSE connection to the given devices
event stream.

Misc
// ...
Single line comment.

/* ... */
Multi-line comment.

#define ANSWER 42
Constant variable declaration.

#include <myLib.h>
Includes a third party library. .

Links
https://www.spark.io/
http://docs.spark.io/
http://community.spark.io/
https://www.spark.io/build

http://docs.spark.io/
http://twitter.com/mattbrailsford
http://creativecommons.org/licenses/by-sa/4.0/
http://docs.spark.io/api/#reading-data-from-a-core-events
https://www.spark.io/
http://docs.spark.io/
http://community.spark.io/
https://www.spark.io/build

spark - Cheat Sheet

docs.spark.io

Created by Matt Brailsford | Licensed under a Creative Commons Attribution-ShareAlike 4.0 International license | Page 3

Pinout Diagram

Ref
https://github.com/spark/core/blob/master/Pin%20mapping/core-pin-mapping-v1.xlsx
http://docs.spark.io/#/shields

Inspired by
http://goo.gl/gvIUsz

Diagram Created by Jonathan Beri / BDub
http://google.com/+JonathanBeri

http://docs.spark.io/
http://twitter.com/mattbrailsford
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/spark/core/blob/master/Pin%20mapping/core-pin-mapping-v1.xlsx
http://docs.spark.io/#/shields
http://goo.gl/gvIUsz
http://google.com/+JonathanBeri

